Service-Robots as Daily Helpers

Fraunhofer Institute for Autonomous Intelligent Systems (AIS) St. Augustin, Germany

Michael Mock

Contents

- A Thesis about Service-Robots and Ethics
- DESIRE German Service Robotic Initiative
- Predictability, Autonomy, Fault-Tolerance
- Summary and Discussion

service-robots.ppt Michael Mock

Fraunhofer _{Institut} Autonome Intelligente Systeme

service-robots.ppt Michael Mock

Fraunhofer Institut Autonome Intelligente Systeme

<u>De</u>utsche <u>Servicer</u>obotik-Initiativ<u>e</u> - DESIRE

The German Service Robotic Initiative

- A project funded by the German ministery of research
- Headed by Fraunhofer (IPA), with leading German robotic/electronic industry (KUKA, Siemens)
- Start 1.10.05, 3 Years duration
- Goals
 - Integrate leading edge technology
 - Provide functionality that works in daily life
 - Offer an open, extensible system architecture

Application Scenarios

- "Clear-up the kitchen table"
 - all objects on top the kitchen table will be moved to where they belong
 - "Fill the dish washer" the dirty dishes will the sorted correctly into the dish washer
- "Clear-up this room"
 - all objects that are not at their place will be moved to where they belong

Service-Robots and Human Operators

Advantages of the Human Operator Concept

Predictability: An industrial proven concept

- A system/machine/robot is predictable if it delivers correct functionality according within a specified time.
- Well known concept from real-time systems and industrial robots
- Sometimes also called deterministic

service-robots.ppt Michael Mock

Fraunhofer Institut Autonome Intelligente Systeme

Predictability and Autonomy

Institut Autonome Intelligente Systeme

Examples of Models (at different layers)

	Laye r	Abstraction "what to do"	Model
well established model	Drives	Drive at speed s	Control loop that regulates output
			voltage (unerential equation moder)
new, but understood	Navigation	Move to position (x,y) without hitting any obstacle	Navigation algorithm with in-built obstacle avoidance (model combining a map and sensor input)
lots of research needed here	Service- Robot	"clear up room"	Room model (non movable objects) Object model - picture of object - where to put it normally - how to grab it Non-identifiable objects are just obstacles

service-robots.ppt Michael Mock

Fraunhofer _{Institut} Autonome Intelligente Systeme

Fault Tolerance

- A model must include the possibility that something goes wrong
 - robot does not recognize objects correctly
 - robot tries to grab an object, but looses it
 - robot has wrong estimation about ist position in the room
 - ...
- A robot should recognize these faults and
 - try some recovery
 - or inform the human operator

service-robots.ppt Michael Mock

Fraunhofer Institut Autonome Intelligente Systeme

Summary

- Authority for Service-Robots stays with the human operator
- Predictability: Operator specifies what the robot does
- Autonomy: Robot selects how to do it
- Combining predictability and autonomy requires expressive models at reasonable abstraction levels.

service-robots.ppt Michael Mock

Fraunhofer Institut Autonome Intelligente Systeme

service-robots.ppt Michael Mock

Fraunhofer Institut Autonome Intelligente Systeme

BMBF Projekt - Start 11/2005 - 3 + 1 Jahr

- 1. Fraunhofer-Institut Produktionstechnik und Automatisierung (IPA)
- 2. Fraunhofer-Institut Autonome Intelligente Systeme (AIS) ← ARCHITEKTUR
- (3. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR))
 - 4. Siemens AG (Siemens)
 - 5. Forschungszentrum Informatik Karlsruhe (FZI)
 - 6. Albert-Ludwigs-Universität Freiburg (ALU)
 - 7. Ruhr-Universität Bochum (RUB)
 - 8. KUKA Roboter GmbH (KUKA)
 - 9. Schunk Gmbh & Co. KG (Schunk)
- 10. InMach Intelligente Maschinen GmbH (InMach)
- 11. Viisage Technology AG (Viisage)
- 12. Gesellschaft für Produktionssysteme GmbH/Neobotix (GPS/Neobotix)
- 13. Gesellschaft für Produktionssysteme GmbH/Projektmanagement (GPS)

Seite 15

Koordination von Subsystemen

